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Abstract

Let v be a hyperbolic equilibrium of a smooth finite-dimensional gradient or gradient-like
dynamical system. Assume that the unstable manifold W of v is bounded, with topological
boundary Σ = ∂W := (closW )\W . Then Σ need not be homeomorphic to a sphere, or to
any compact manifold. However, consider PDEs

ut = uxx + f(x, u, ux)

of Sturm type, i.e. scalar reaction-advection-diffusion equations in one space dimension.
Under separated boundary conditions on a bounded interval this defines a gradient dynam-
ical system. For such gradient Sturm systems, we show that the eigenprojection PΣ of Σ
onto the unstable eigenspace of v is homeomorphic to a sphere. In particular this excludes
complications like lens spaces and Reidemeister torsion. Excluding Schoenflies complications
like Alexander horned spheres, we also show that both the interior domain PW of PΣ and
the one-point compactified exterior domain in the tangential eigenspace are homeomorphic
to open balls. Our results are based on Sturm nodal properties.



1 Introduction

1.1 Sturm systems

As a specific Sturm system we consider the scalar partial differential equation (PDE)

ut = uxx + f(x, u, ux)(1.1)

on the unit interval 0 < x < 1. Subscripts t, x indicate partial derivatives of solutions
u = u(t, x). PDEs of the form (1.1) model the standard Brownian heat equation ut = uxx
with nonlinear, x-dependent effects f of reaction and advection type. Numerous examples
from population biology, spatially heterogeneous chemical reactions, stochastic processes of
interacting particles, viscous hyperbolic balance laws, and many other applied areas, appear
as such models in their most simplistic PDE form. See for example the survey [FiSche03]
and the references there.
To be specific, we impose Neumann boundary conditions

ux = 0(1.2)

at x = 0, 1. Any other linear separated boundary conditions, i.e. of Dirichlet or Robin
type, would work equally well with only minor modifications. We explicitly exclude periodic
boundary conditions x ∈ S1 = R/Z, for reasons detailed below. Throughout we assume
f ∈ C2 is twice continuously differentiable. Standard analytic semigroup theory provides a
strongly continuous, compact local semiflow u(t) := u(t, ·) = T (t)u0 ∈ Xα for Cauchy initial
data u0 ∈ Xα. Here X = L2, and Xα, 0 ≤ α < 1, are the domains of the fractional powers
(−∂2

x)
α with the graph norm. We choose 3/4 < α < 1 to ensure the embedding Xα ↪→ C1 is

continuous. See for example [He81, Pa83, SeYo02] for details.
We will occasionally consider solutions u(t) = T (t)u0 of (1.1), (1.2) in backwards time
t < 0. This will abbreviate the property T (−t)u(t) = u0 of u(t), where −t > 0. Although
several such u(t) might exist, in general, backwards uniqueness holds true in our specific
parabolic setting; see for example [BaTa73, Fr64, LiMa60, Te88]. Backwards existence fails
miserably, of course, for general u0 ∈ Xα, except in very particular circumstances, often
of finite dimension. Prominent interesting examples where even global backwards existence
does hold are unstable manifolds and global attractors, as outlined below. Equilibria, i.e.
time-independent solutions u(t) ≡ v, are trivial examples.
Let v = v(x) denote an equilibrium of the PDE (1.1), (1.2), i.e. a solution of the ODE
boundary value problem

0 = vxx + f(x, v, vx),(1.3)
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for 0 < x < 1, again with Neumann boundary

vx = 0(1.4)

at x = 0, 1. We call v hyperbolic if µ = 0 is not an eigenvalue of the linearization

µ ϕ = ϕxx + b ϕx + a ϕ(1.5)

on 0 < x < 1, of course under Neumann boundary ϕx = 0, for x = 0, 1. Here b = b(x) :=
fp(x, v(x), vx(x)) and a = a(x) := fu(x, v(x), vx(x)) depend on x, in general, via the partial
derivatives fu, fp of f = f(x, u, p). Clearly (1.5) is a Sturm-Liouville eigenvalue problem,
and all eigenvalues µ are real. In particular µ = 0 is the only candidate for a purely
“imaginary” eigenvalue and our definition of hyperbolicity of the equilibrium coincides with
the usual definition for dynamical systems. For later use we observe that all eigenvalues
µ0 > µ1 > . . . → −∞ of (1.5) are algebraically simple, with associated eigenfunctions
ϕ0, ϕ1, . . . , normalized in Xα, and with the sign convention

ϕk(0) > 0.(1.6)

The present paper aims at a precise geometric description of the finite-dimensional unstable
manifold W associated to the hyperbolic equilibrium v up to, and including, its topological
boundary ∂W := clos(W )\W . Quite differently from the vast geometric possibilities in
general nonlinear dynamics, we will prove that Σ = ∂W is a Schoenflies sphere. More
precisely Σ is not only homeomorphic to a sphere, but its interior W is a ball, and so
is its exterior after one-point compactification – both of course in a suitable global finite-
dimensional coordinatization. See theorem 1.1 below.
Two structural ingredients are essential to our result: the variational or gradient structure
of (1.1), (1.2), and its nonlinear Sturm property. We explain these ingredients next.
The Sturm aspect which appears in linear guise in (1.5) becomes crucial via a nodal property
or zero number z, in the nonlinear version. For any continuous ϕ : [0, 1]→ R let 0 ≤ z(ϕ) ≤
∞ denote the number of strict sign changes of ϕ; only for ϕ identically zero let z(ϕ) := −1.
More precisely z(ϕ) is the supremum of all k such that we can find 0 ≤ x0 < x1 < . . . < xk ≤
1 with strict sign alternation ϕ(xj)ϕ(xj+1) < 0, for all j = 0, . . . , k − 1. Standard Sturm
theory, for example, asserts z(ϕk) = k for all eigenfunctions. We will also use the notation

z(ϕ) = k±(1.7)

to indicate that z(ϕ) = k and ±ϕ(0) > 0. In particular, z(ϕk) = k+ by our sign convention.
A parabolic PDE version of (1.5), already studied by Sturm [St36] for a = a(x), b = b(x), is

ϕt = ϕxx + b ϕx + a ϕ;(1.8)
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see also [Po33]. For time dependent coefficients a = a(t, x), b = b(t, x), assumed continuous
here for simplicity, the most comprehensive generalization to date is due to [An88], theorems
A–D, as follows. Let ϕ(t) := ϕ(t, ·) ∈ Xα, t ≥ 0, abbreviate the solution of (1.8) with initial
condition ϕ(0, ·) = ϕ0 ∈ Xα\{0}. Then

(i) z(ϕ(t)) <∞ for any t > 0;

(ii) t 7→ z(ϕ(t)) is nonincreasing with t;(1.9)

(iii) t 7→ z(ϕ(t)) drops strictly at t = t0 > 0 if, and only if,

ϕ(t0) possesses a multiple zero x0 ∈ [0, 1], i.e. ϕ(t0, x0) = ϕx(t0, x0) = 0.

This implies, for example, that t 7→ z(ϕ(t)) can drop only finitely often, after it has become
finite. For all other times t, the spatial profile x 7→ ϕ(t, x) possesses only simple zeros.

Under the name of lap-number this idea had been brought to bear in a nonlinear context of
f = f(u) by Matano [Mat82] with ϕ := ux. Many papers have followed his footsteps. In our
setting it is most suitable to consider differences

ϕ := u2 − u1(1.10)

of any two distinct solutions u1, u2 of the PDE (1.1), (1.2). Indeed such ϕ satisfy equations
of the form (1.8) with suitable time-dependent coefficients a, b which depend on the choice
of u1, u2. In this setting we call (1.9)(i)-(iii) the Sturm property of the PDE (1.1), (1.2).
Sturm himself used the Sturm property of (1.8) to show k ≤ z(ϕ) ≤ ` for any nontrivial
linear combination ϕ of the eigenfunctions ϕk, ϕk+1, . . . , ϕ`; see [St36].
Delayed monotone feedback equations and Jacobi systems are two other types of systems
which are known to possess the Sturm property. Jacobi systems, as introduced and studied
by [FuOl88], take the ODE form

u̇j = fj(uj−1, uj, uj+1)(1.11)

for j = 1, . . . , N . Here all fj are assumed to possess strictly positive partial derivatives with
respect to their off-diagonal entries uj±1. “Neumann” boundary conditions are

u0 := u1, uN+1 := uN .(1.12)

Other separated linear boundary conditions like “Dirichlet” u0 = uN+1 = 0 or mixed Robin
type are possible. Periodic boundary conditions j (mod N) with cyclic uN+1 := u1, u0 := uN
also possess the Sturm property. For the cyclic variant of cyclic monotone feedback systems
see for example [MPSm90, Sm95] and the many references there.
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Delayed monotone feedback equations

u̇(t) = f(u(t), u(t− 1))(1.13)

have been studied extensively by [MP88, FiMP89a, MPSe96a, MPSe96b] and others. For
constant sign of the partial derivatives of f with respect to the delayed feedback entry u(t−1),
the Sturm property prevails.
Under separated linear boundary conditions, like the Neumann case (1.2), the parabolic PDE
(1.1) also possesses a variational structure, in addition to the Sturm property (1.9), (1.10).
More precisely, there exists a strict Lyapunov function V = V (u) of the form

V (u) :=

1∫
0

g(x, u, ux)dx(1.14)

with suitable g. In fact, the time derivative takes the form

d

dt
V (u(t)) = −

1∫
0

h(x, u, ux)u
2
t dx(1.15)

with uniformly positive h. In particular V decreases strictly monotonically, except at
equilibria. See [Ze68] and also the elegant approach of [Mat88] for details. The spe-
cial case f(x, u, p) = f(x, u) of advection-free nonlinearities f is well-known: g(x, u, p) :=
1
2
p2 − F (x, u), where Fu = f defines a primitive function F of f , and h ≡ 1. By LaSalle’s

invariance principle and compactness of the local semiflow T (t), for t > 0, the Lyapunov
function V ensures that ω-limit sets of bounded trajectories consist entirely of equilibria.
An analogous property holds for Jacobi systems (1.11) under separated linear boundary
conditions.
We caution our reader that periodic boundary conditions for the PDE (1.1) or Jacobi systems
(1.11) preclude the existence of a strict Lyapunov function V in general. Indeed rotating
wave periodic solutions may arise for suitable f := f(u, p) in the PDE (1.1), and in the cyclic
Jacobi system (1.11) for suitable fi = f(ui−1, ui, ui+1). Delayed monotone feedback equations
(1.13) also support time periodic solutions. Therefore we will exclude these non-variational
cases, here and below, and focus again on the variational PDE (1.1), (1.2) with Sturm
property (1.9) and Lyapunov function (1.14) in the present paper. See however [FiRaRo12]
for a gradient structure of (1.1), (1.2) under periodic boundary conditions, when f = f(u, p)
is even in p – an intriguing case not covered here.
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1.2 Main result

To formulate our main result, theorem 1.1 below, we fix any unstable hyperbolic equilibrium
solution u(t, x) = v(x) of the parabolic PDE (1.1), (1.2). Let i(v) ≥ 1 denote the unstable
dimension of v. In other words, the eigenvalues µk, k ≥ 0, of the linearization (1.5) at v
satisfy

µ0 > · · · > µi(v)−1 > 0 > µi(v) > · · · → −∞.(1.16)

From the variational view point of the Lyapunov function V , the equilibrium v is a critical
point of V with Morse index i(v) ≥ 1.
Following [He81], the hyperbolic equilibrium v comes equipped with a global differentiable
unstable manifold W of dimension i(v), much like in finite-dimensional dynamics. The
manifold W consists of all u0 ∈ Xα which possess an unique global past history u(t, ·) ∈ Xα,
for all −∞ < t ≤ 0, such that u(0) = u0 and

lim
t→−∞

u(t) = v(1.17)

holds in Xα. The global unstable manifold W is in fact an embedded manifold, due to
backwards uniqueness and the gradient property of (1.1), (1.2). See [He81], theorems 6.1.9
and 6.1.10. Backwards convergence of u(t) ∈ W\{v} to v is exponential and asymptotically
tangent to an eigenfunction ϕk, for some k = 0, . . . , i(v)− 1, i.e.

lim
t→−∞

u(t)− v
|u(t)− v|α

= ±ϕk(1.18)

in Xα. This is due to the absence of superexponential decay; see e.g.[Lax56, Ag66, He85,
An86, An88, Ch&al92] and (2.13) below.
In further detail, [BrFi86] have investigated the properties of differentiable fast unstable
submanifolds W i of W with dimension 1 ≤ i ≤ i(v). See also lemma 2.1 below. Here W i is
characterized by backwards asymptotic tangency (1.18), for some k = 0, . . . , i−1. Of course
W = W i(v) in this notation. Moreover the tangent space to W i at v is given by

Ei := span{ϕ0, . . . , ϕi−1}(1.19)

for any i = 1, . . . , i(v). Let P i denote the eigenprojection onto Ei,

ker P i = span {ϕi, ϕi+1, . . .}.(1.20)

By general invariant manifold theory, the projection

P i : W i → Ei(1.21)
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is a local diffeomorphism in a neighborhood of the hyperbolic equilibrium v ∈ W i. Here and
below we translate v to v ≡ 0, without loss of generality, by rewriting (1.1) as a PDE for
u− v of the same general form, but with f(x, 0, 0) ≡ 0.
Due to the variational gradient structure and the Sturm property of our specific Sturm system
(1.1), (1.2) we will establish the following result of Schoenflies type on the global topology
of the fast unstable manifolds W i, and in particular on the unstable manifold W = W i(v)

itself.

Theorem 1.1 Let v ≡ 0 be an unstable hyperbolic equilibrium of the Sturm system (1.1),
(1.2), with Morse index alias unstable dimension i(v) ≥ 1. Let i ∈ {1, . . . , i(v)} be arbitrary,

and assume the fast unstable manifold W i of dimension i to be bounded in Xα. Let W
i

:=

closW i denote the closure of W i in Xα with topological boundary Σi−1 = ∂W := W
i\W i.

Let P i denote the eigenprojection onto the tangent space Ei of W i at v ≡ 0, given by the
span of the eigenfunctions ϕ0, . . . , ϕi−1 of the linearization (1.5) of (1.1), (1.2) at v ≡ 0.
Then the eigenprojection

P i : W
i → B̄i := P iW

i ⊆ Ei ∼= Ri(1.22)

is a homeomorphism onto its image.
Moreover there exists a homeomorphism

h : Ri
∞ → Ri

∞(1.23)

of the one-point compactification Ri
∞ = Ri ∪ {∞} of Ri such that the homeomorphic images

h P iW i = B

h P iW
i

= B̄(1.24)

h P iΣi−1 = S

are the open/closed unit balls B/B̄ and the unit sphere S in Ri
∞, respectively. Similarly, the

exteriors correspond to their unit exterior counterpart balls:

h(Ri
∞\P iW i) = Ri

∞\B
(1.25)

h(Ri
∞\P iW

i
) = Ri

∞\B̄.
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Figure 1.1: Two planar unstable manifolds W of an equilibrium C with Morse index 2;
stable equilibria A1, A2 with Morse index 0 and saddles B1, B2 of Morse index 1 on the
boundary ∂W := W\W (fat). The one-dimensional fast unstable manifold W 1 of C is
indicated by double arrows. Case (a) left: the Chafee-Infante problem (1.1), (1.2) with
f = λu(1−u2), π2 < λ < 4π2, C = 0, of Sturm type. Case (b) right: a planar gradient flow
example (1.26) with suitable real analytic V (u). Note how the boundary ∂W is homeomorphic
to a circle in the Chafee-Infante Sturm case (a), but not in the gradient case (b).

1.3 Gradient systems

We compare our result with the case of standard gradient systems

u̇ = −Vu(u)(1.26)

of scalar smooth or analytic Morse functions V : RN → R in finite dimension N . We will
only address hyperbolic equilibria, alias nondegenerate critical points of V, with transverse
intersections of all stable and unstable manifolds. In this generic case, and in view of the
results by Palis and Smale [Pa69, PaSm70, PdM82], C0 structural stability ensues under
compactness assumptions. The resulting differences between (1.26) and Sturm systems like
the PDE (1.1), (1.2) can then be ascribed to the sole influence of the Sturm properties (1.9),
(1.10).
We consider the planar case N = 2 first; see figure 1.1. On the left we indicate the flow in the
closure W of the two-dimensional unstable manifold W of the trivial equilibrium v := C ≡ 0
for the Chafee-Infante problem (1.1), (1.2), where the nonlinearity

f = λu(1− u2)(1.27)

is assumed to be a symmetric cubic. The parameter λ is chosen between π2 and 4π2 to ensure
the Morse index i(C) equals 2. Note how the fast unstable manifold W 1 of C is an interval
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with zero-sphere boundary Σ0 = ∂W 1 = {A1, A2} given by the spatially homogeneous sinks
A1 ≡ −1, A2 ≡ +1. The boundary Σ1 := ∂W of the full unstable manifold W = W 2 of C
is homeomorphic to the unit circle/1-sphere S1. This picture already appears in [He81]. See
also [ChIn74] and the work by Conley and Smoller in [Sm83] for pioneering further details
on this problem.
Next consider a gradient flow (1.26) of type (b), as on the right of figure 1.1. The fast unstable
manifold W 1 of v := C has zero-sphere boundary ∂W 1 = {A1, A2} again. The boundary
Σ1 := ∂W of the full unstable manifold W = W 2 of C, however, is not a circle. Rather ∂W is
homeomorphic to a circle with an interior spike. The circle is the one-dimensional unstable
manifold of the saddle B2, with boundary given by the single sink {A1}. The additional
spike is the one-dimensional unstable manifold of the saddle B1, with zero-sphere boundary
{A1, A2}. The interior spike is attached to the circle at A1. Admittedly ∂W is homotopy
equivalent to the circle S1, but not homeomorphic. Evidently the generating Lyapunov
function V can be chosen real analytic, and the example (b) is structurally stable due to
[Pa69]. Clearly the example does not satisfy the conclusions of theorem 1.1 and therefore
fails to appear in the class of Sturm systems.
In [BrFi89] uniqueness of heteroclinic orbits between equlibria of adjacent Morse indices was
observed. Here a global solution u(t, x), t ∈ R, of (1.1), (1.2) is called heteroclinic from
equilibrium v− to v+, in symbols u : v− ; v+, if

lim
t→±∞

u(t) = v±(1.28)

in Xα. By inspection of figure 1.1 we find the numbers of heteroclinic orbits between equi-
libria of adjacent Morse indices listed in Table 1.1. While their uniqueness is confirmed in
the Chafee-Infante case (a) of Sturm type, in the upper right triangle of Table 1.1, such
uniqueness fails in the lower left triangle of the non-Sturm case (b). Indeed there are two
heteroclinic orbits from the planar source C to the saddle B1 and two heteroclinics from the
saddle B2 to sink A1, in case (b).

(b)\ (a) C B1 B2 A1 A2

C - 1 1 - -
B1 2 - - 1 1
B2 1 - - 1 1
A1 - 1 2 - -
A2 - 1 - - -

Table 1.1: Numbers of heteroclinic orbits between equilibria of adjacent Morse indices in
figure 1.1. Upper right : Sturm case (a). Lower left: non-Sturm case (b).
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In fact the one-dimensional case i = 1 of theorem 1.1 is equivalent to the elementary unique-
ness of monotone heteroclinic orbits between adjacent equilibria. Indeed the fastest unstable
manifold W 1 of any hyperbolic equilibrium v is one-dimensional and tangent to the posi-
tive first eigenfunction ϕ0 at v. Moreover comparison principles show that (1.1), (1.2) is a
strongly monotone dynamical system in the sense of [Hi88, Mat86b, Mat87]. Of course this
kind of monotonicity corresponds to the fact that

z(u2(t)− u1(t)) = 0(1.29)

is preserved for any t ≥ t0, once it holds at t = t0; see the refined monotonicity property
(1.9)(ii) of the zero number z. In particular strong monotonicity implies strict monotonicity
of t 7→ ±u±(t, x), for any fixed 0 ≤ x ≤ 1. Therefore ∂W 1 = {v±} must consist of exactly
two equilibria which satisfy

v+(x) > v(x) > v−(x),(1.30)

for all 0 ≤ x ≤ 1. The heteroclinic orbits u±(t, x) from v to v± satisfy

lim
t→−∞

u±(t)− v
|u±(t)− v|α

= ±ϕ0(1.31)

in Xα; see (1.18). This proves theorem 1.1, for i = 1.
Since the particular case i = 1 uses strong monotonicity, only, but not the full subtle
force of the Sturm properties (1.9), (1.10), it extends to scalar reaction-diffusion-advection
equations in more than one space dimensions. Flow embedding theorems in the spirit of
[Po95, PrRy98a, PrRy98b, DaPo99], on the other hand, are able to realize flows like the one
in figure 1.1(b), in the closure of fast unstable manifolds W 2, and thus provide counterex-
amples to theorem 1.1 in space dimensions dimx ≥ 2.
For Sturm systems, the planar case i(v) = dimW = 2 has already been addressed in [FiRo08];
see sections 3, 4 there. Even though the results there were only derived for planar global
Sturm attractors, as defined below, they carry over to the present case. See figure 1.2.
The fast unstable manifold W 1, where z(u − v) = 0±, is drawn horizontally, with limiting
equilibria v±0 . The remaining parts of the boundary ∂W ∼= S1 are two graphs over W 1 with
alternating saddles and sinks v±k , k = 1, . . . , 2n± − 1 on each graph. The equilibria there
satisfy z(v±k −v) = 1±. Moreover z(v±k −v

±
j ) = 0 for v±j 6= v±k of the same ± superscript. See

[FiRo08] for further details. The minimalistic Chafee-Infante case of figure 1.1(a) corresponds
to n± = 1, where the two boundary graphs over W 1 are the unstable manifolds of just a
single saddle v±1 , each.
After this planar Sturm excursion let us resume our discussion of the general variational
Morse case (1.26). Suppose the boundary ∂W of the unstable manifold W of a hyperbolic
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Figure 1.2: Two dimensional closures W of unstable manifolds have circle boundaries. Equi-
libria v±k with even indices k are sinks i(v±k ) = 0, odd k are saddles i(v±k ) = 1, and v is a
source, i(v) = 2.

equilibrium v is in fact a compact manifold M . Obviously M = ∂W need not be of dimension
i(v) − 1 = dimW − 1. Already the height flow on the unit sphere W = Si(v) ⊂ Ri(v)+1,
with V (u) := ui(v)+1 and the gradient Vu taken inside Si(v) provides such an example in
N = i(v) + 1 dimensions. Indeed v is the positive unit vector ei(v)+1, and ∂W = {−ei(v)+1}
is not a sphere of dimension i(v)− 1.
Lens spaces L = L(p; q1, . . . , qn), n ≥ 2, are quotients of the unit sphere S2n−1 in Cn under
free linear actions of cyclic groups Zp, for any p ≥ 2. They provide examples of more
intriguing boundaries ∂W = L. The free Zp action for qk ∈ {1, . . . , p− 1}, each co-prime to
p, is given by the diagonal action of the Zp generator

zk 7→ exp(2πiqk/p)zk,(1.32)

for k = 1, . . . , n. The lens space L is defined as the orbit space

L(p; q1, . . . , qn) := S2n−1/Zp(1.33)

of the free Zp action. Non-homeomorphic lens spaces for different choices of q1, . . . , qn may be
homotopy equivalent, thus with identical homology, but can be distinguished by Reidemeister
torsion. See for example [Hat02].
As a nontrivial model for the closure W of the unstable manifold W of the trivial equilibrium
v = 0 of a gradient flow (1.26) we let W be the closed unit ball in R2n = Cn, but with points
on the boundary S2n−1 identified to the lens space L = L(p; q1, . . . , qn) via the free Zp-action.
In polar coordinates u = rϑ, r ≥ 0, ϑ ∈ S2n−1, V = V (r, ϑ) on W the gradient flow (1.26)
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becomes

ṙ = −Vr
(1.34)

ϑ̇ = −1

r
Vϑ

For simplicity, we consider V of the particular form

V = exp(R(r) + Φ(ϑ)).(1.35)

To allow for the boundary identification with the lens space L, we first choose Φ(ϑ) invariant
under the Zp-action on ϑ ∈ S2n−1. With

expR(r) := 1− 1

2
r2(1− 1

2
r2),(1.36)

the gradient flow (1.35) becomes

ṙ = V · r(1− r2);

(1.37)

ϑ̇ = −1

r
V · Φϑ.

The positive Euler multiplier V > 0 neither affects trajectories, nor W,W, ∂W . Equivariance
of (1.26), (1.35) under the Zp-action and time invariance of the unit sphere r = 1 provides the
unstable manifold W of the trivial, totally unstable equilibrium v ≡ 0 to possess lens space
boundary, as claimed. By the strong Whitney embedding theorem the above construction
can be embedded into a total dimension N ≥ 4n, [Hi76], keeping the Morse index i(v ≡ 0) =
dimW = 2n unchanged.
If desired, this potential V can also be adapted such that all critical points are hyperbolic
with transverse intersections of stable and unstable manifolds. If all eigenvalues µk of the
linearization are required to be distinct, this will of course require a slight breaking of the
Zp-equivariance of V . By structural stability this will not affect the topology of the unstable
manifold W with lens space boundary ∂W = L(p; q1, . . . , qn).
Other examples with manifold boundary ∂W arise from free linear actions of noncyclic finite
groups T on S2n−1. See [Wo11] for a classification, and [Hat02] for references and a summary
with particular attention to the case of S3.
Suppose that the boundary ∂W of the unstable manifold W of an unstable hyperbolic
equilibrium v is already known to be homeomorphic to the unit sphere S of dimension
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i(v) − 1. For i(v) ≥ 3 this does not imply, directly, that W is homeomorphic to the open
unit ball B of dimension i(v). This difficulty is called the Schoenflies problem. The Alexander
horned 3-sphere [Al24] is a striking illustration of a fundamental obstacle, in the C0 category.
For smooth embeddings of spheres S, and in the piecewise linear case, such counterexamples
do not arise except possibly in dimension i(v) = 4. Under an extension assumption on the
homeomorphic embedding of S, called flat embedding, the Schoenflies problem does not arise
either; see [Bro60, Maz59, Mo60]. Conceivably, hyperbolicity and transversality on ∂W may
suffice to resolve the Schoenflies problem for general gradient flows (1.26). In the general
case of theorem (1.1), however, which does not rely on such additional generic assumptions
we prefer to pursue a direct proof which emphasizes the pervasive geometric power of the
Sturm properties (1.9), (1.10).

1.4 Global Sturm attractors

Many previous results on parabolic PDEs and on delay equations have focussed on descrip-
tions of the global attractor A. See for example [BaVi92, ChVi02, Ed&al94, Ha88, Ha&al02,
La91, Ra02, Te88], for general background information on global attractors. Basically a
dissipativeness assumption is imposed on f such that solutions u(t, ·) = T (t)u0 enter, and
stay inside, a large ball |u|α ≤ C after some time t ≥ t0 = t0(u0) which may depend on
u0. For compact C1 semigroups, finite box-counting dimension of A ensues. Moreover A
is nonempty, maximal compact and invariant, attracts all bounded sets, and consists of all
global solutions u(t, ·), t ∈ R, which are uniformly bounded by C.
For dissipative Sturm systems we call the global atractor A a Sturm attractor. Due to the
variational structure (1.14), (1.15), the Sturm attractor A = Af of (1.1), (1.2) consists of
equilibria and their heteroclinic orbits, only. This is immmediate, because the Lyapunov
function V also ensures α-limit sets of bounded global orbits u(t, ·), t ∈ R, to consist entirely
of equilibria. In particular the closure W of the unstable manifold W of any hyperbolic
equilibrium v is contained in the Sturm attractor,

W ⊆ Af .(1.38)

Let E ⊆ Af denote the set of all equilibria. If all equilibria are hyperbolic, then Ef is finite
by compactness of Af , and

Af =
⋃
v∈E

W (v)(1.39)

is the union of the unstable manifolds W (v) of the equilibria v ∈ E .
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Let N := max{i(v); v ∈ E} denote the maximal Morse index in E . For f = f(u) of
class C2 and independent of x and ux it was shown in [Jo89, Bru90] that the L2-orthogonal
eigenprojection

PN := Af → EN = span {ϕ0, . . . , ϕN−1}(1.40)

is injective. Moreover the global attractor is a C1 graph over the compact range of PN .
Here ϕ0, . . . , ϕN−1 can in fact be chosen to be eigenfunctions of any Sturm-Liouville problem
(1.5), not necessarily coming from a linearization. The Fourier choice ϕk(x) := cos(kπx)
is perfectly acceptable. These results are based on the Sturm nodal property (1.9), (1.10).
A generalization to f = f(x, u, ux) of class C2 was established in [Ro91], for separated
boundary conditions. Under periodic boundary conditions x ∈ R/Z and for Lipschitz f
[MaNa97] have shown that the global attractor is still a C0 graph. They have also obtained
Lipschitz graphs, albeit under a somewhat peculiar Lipschitz constraint like |fp| ≤ 2π on the
circle x ∈ R/Z.
These results are stronger than the mere homeomorphisms of theorem 1.1, in the regularity
aspect. Moreover they address the whole Sturm attractor Af rather than just a single
unstable manifold W or its closure W . On the other hand, no geometric information on Af
or its PN projection is obtained.
Already the planar Chafee-Infante example of figure 1.1(a) shows that the boundary circle
∂W (C) ∼= S1 can be Hölder continuous, at best, but not Lipschitz. Indeed Hölder cusps arise
at A1, A2, of Hölder exponent µ0/µ1 > 0, where µk < 0 denote the eigenvalues at A1, A2.
We do not pursue this regularity question here.
In a continuing investigation of Sturm attractors, the present authors have focussed on a
much more restricted geometric aspect. We only addressed the rather delicate global question
of which equilibria, exactly, possess heteroclinic connections to which other equilibria. This
question dates back to previous work by Conley and Smoller, [CoSm83, Sm83], and has been
pursued extensively by [He85, BrFi88, BrFi89, FuRo91, FiRo96, FiRo99, FiRo00, FiRo09a,
FiRo08, FiRo09b, Fi&al04]. In that line of research, theorem 1.1 is a first attempt to lift
these essentially combinatorial results to a geometric level.
As a cautionary remark we add that a geometric description of the closure of the heteroclinic
set between two hyperbolic equilibria v1 and v2, i.e. of the transverse intersection between
their unstable and stable manifolds, has remained elusive. For adjacent Morse indices i(v1) =
i(v2) + 1, the uniqueness result on heteroclinic orbits shows that their heteroclinic set is an
interval with S0 boundary {v1, v2}. In the planar case i(v1) = i(v2) + 2 we believe the
heteroclinic set to be a disc with S1-boundary. The boundary should consist of the unique
heteroclinics v1 ; v± ; v2 between v1, v2 and two further equilibria v± of intermediate
Morse index i(v±) = i(v2) + 1. See figure 1.2 for the typical case. This is also indicated
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by the quadrangulation procedure in planar connection graphs; see [FiRo08]. The snow-ball
principle of [BrFi89] is based on the same idea. Higher dimensional cases i(v1) ≥ i(v2) + 3
have not been published, to our knowledge, in spite of substantial encouragement from our
advisors.

1.5 Outline

An outline of the proof of theorem 1.1, and of the paper, is as follows. We proceed by
induction on the dimension 1 ≤ i ≤ i(v) of the fast unstable manifold W i tangent to the
eigenspace Ei = span{ϕ0, . . . , ϕi−1} of eigenvalues µ0 > · · · > µi−1 > 0 at the hyperbolic
equilibrium v ≡ 0; see (1.16) – (1.21). We have already dealt with the strictly monotone
case i = 1; see (1.29) – (1.31). We therefore consider the theorem proved for W 0, . . . ,W i−1

and complete the induction step for W i. As was explained repeatedly we may assume v ≡ 0
without loss of generality.
In section 2 we prepare the induction step for the boundary Σi−1 := ∂W i, which proceeds in
Mayer-Vietoris style. Lemma 2.1 collects some known results on the fast unstable manifolds
W i. We then decompose the sphere candidate Σi−1 into two closed hemisphere candidate
caps Σi−1

± ,

Σi−1 = Σi−1
+ ∪ Σi−1

− , Σi−1
± := ω(Σi−1

δ± );(1.41)

where Σi−1
± are obtained as ω-limit sets of two carefully flattened small upper and lower

hemispherical closed protocaps Σi−1
δ± around the equilibrium v = 0. The notion of ω-limit set

is recalled in (2.17). The protocaps Σi−1
δ± are constructed as graphs over the faster unstable

submanifold W i−1 in W i which divides their union equatorially; see (2.18) – (2.20). In lemma
2.2 we establish that

z(u2 − u1) < i− 1(1.42)

for distinct uκ in the same flattened protocap Σi−1
δ± . It is a rather delicate matter, achieved

only in lemma 3.6, to extend this property to the ω-limiting hemisphere candidates Σi−1
± . Of

course the Sturm property (1.9) is crucial here.

More broadly, section 3 is devoted to injectivity results for projections P j on W
j

and, most
importantly, for P i−1 on Σi−1

± . See lemmas 3.2 and 3.6. Together with the surjectivity results
of lemma 4.1, which only use Brouwer degree, this will prove that the homeomorphic ranges

P i−1Σi−1
+ = P i−1Σi−1

− = P i−1W
i−1

=: B̃i−1(1.43)

all coincide. This allows us to write the homeomorphic images P iΣi−1
± and P iW

i−1
in the

eigenspace Ei as graphs of scalar functions η± and ηe, respectively, over the same domain
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B̃i−1 ⊆ Ei−1. The functions η±, ηe simply denote the remaining ϕi−1-component of the
respective projections P i to Ei, for any given projection P i−1 to Ei−1.
In lemma 4.2 we then establish that

η− < ηe < η+(1.44)

in B̃i−1, except at the boundary ∂B̃i−1 = P i−1Σi−2 where all three functions coincide. By

the induction hypothesis, however, the homeomorphic image B̃i−1 = P i−1W
i−1

is already a
ball with Schoenflies boundary sphere ∂B̃i−1 = P i−1Σi−2. This proves that the hemisphere
candidates Σi−1

± are indeed otherwise disjoint hemispheres over their joint equator

Σi−1
+ ∪ Σi−1

− = Σi−1,
(1.45)

Σi−1
+ ∩ Σi−1

− = Σi−2,

in Mayer-Vietoris style.

To prove the ball part, in section 5, we first show that P iW
i
, in (1.43), is contained in the

closed ball B̄i which consists of the boundary (i − 1)-sphere Si−1 := P iΣi−1 = P i∂W and
its interior open ball Bi = int Si−1 ⊆ Ri. We then proceed indirectly to show surjectivity

P i : W → B̄i.(1.46)

In fact we construct an impossible retraction ρ : B̄ → Si−1 if surjectivity fails, and thus
reach a contradiction. This completes the proof of theorem 1.1
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2 Zero numbers on invariant manifolds

We recall and adapt some results from the literature on invariant manifolds in Sturm systems.
In lemma 2.1 we recall the analysis of zero numbers on fast stable and unstable manifolds from
[BrFi86]. We then introduce the flattened small upper and lower hemispherical protocaps
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Σi−1
δ± around the equilibrium v ≡ 0, which generate the hemisphere candidates Σi−1

± as their
ω-limit sets. See also figure 2.1. In lemma 2.2 we show z(u2 − u1) < i− 1 on the protocaps

Σi−1
δ± . We also show Σi−1

± ∩W
i−1

= Σi−2 to prepare for the final Mayer-Vietoris hemisphere
decomposition

Σi−1 = Σi−1
+ ∪ Σi−1

− ,
(2.1)

Σi−2 = Σi−1
+ ∩ Σi−1

−

which will only be achieved in lemma 4.2.

Lemma 2.1 [BrFi86] Let v ≡ 0 be a hyperbolic equilibrium of the Sturm PDE (1.1), (1.2),
with unstable dimension i(v) ≥ 1, eigenvalues µ0 > . . . > µi(v)−1 > 0 > µi(v) > . . ., eigenfunc-
tions ϕ0, . . . , ϕi(v)−1, ϕi(v), . . ., complementary eigenspaces Ei = span {ϕ0, . . . , ϕi−1}, Ei =
span {ϕi, ϕi+1 . . .},

Xα = Ei ⊕ Ei(2.2)

and associated complementary eigenprojections P i, Pi := id− P i.
Then for every integer 1 ≤ i ≤ i(v), for every ε0 > 0 small enough, and all 0 < ε < ε0, there
exists δ > 0 such that the following holds on open balls Bδ, Bε ⊂ Xα and Bj

δ ⊆ Ej, Bj,ε ⊆ Ej
of radii δ, ε in the Xα-norm | · |α.
Let u(t) be any solution of (1.1), (1.2) such that u(t) ∈ Bε0 for all t ≤ 0. Then u(t) converges
to v and is asymptotically tangent to some ϕk, i.e.

lim
t→−∞

u(t)/|u(t)|α = ±ϕk(2.3)

for some 0 ≤ k < i(v). Similarly

lim
t→+∞

u(t)/|u(t)|α = ±ϕk(2.4)

holds for global forward solutions u(t) ∈ Bε0 , t ≥ 0, and some k ≥ i(v). The same two
statements (2.3), (2.4) hold, more generally, if we replace u(t) by the difference u2(t)− u1(t)
of any two non-identical solutions u1(t), u2(t) ∈ Bε0, for t→ ∓∞ respectively.
In the unstable case 0 ≤ i < i(v) there exists a C1-map

σi : Ei ⊃ Bi
δ → Bi,ε ⊂ Ei,(2.5)

such that

(σi)′(0) = 0(2.6)

16



and the local fast unstable manifold W i
loc := graph σi ⊂ Bε ⊂ Xα consists of v ≡ 0 and all

v 6= u0 ∈ Bε with P i
u0
∈ Bi

δ and a global past history u(t) ∈ Bε, t ≤ 0, tangent to Ei, i.e.

lim
t→−∞

u(t)/|u(t)|α = ±ϕk(2.7)

for some 0 ≤ k < i. Moreover

z(u2 − u1) < i(2.8)

for any two distinct u1, u2 ∈ W i
loc.

Similarly, in the stable case i ≥ i(v) there exist ε0, δ and a C1-map

ηi : Ei ⊃ Bi,δ → Bi
ε ⊂ Ei(2.9)

such that the local fast stable manifold Wi,loc = graph ηi ⊂ Bε ⊂ Xα consists of v ≡ 0 and
all v 6= u0 ∈ Bε with Piu0 ∈ Bi,δ and a global forward solution u(t) ∈ Bε, t ≥ 0, tangent to
Ei, i.e.

lim
t→+∞

u(t)/|u(t)|α = ±ϕk(2.10)

for some k ≥ i. Moreover

z(u2 − u1) ≥ i(2.11)

for any two non-identical u1, u2 ∈ Wi,loc.

Proof:
The proof of statements (2.5) – (2.11) of lemma 2.1 proceeds via semigroup theory along
the lines of [BrFi86], where the case f = f(u) was presented in detail, in a slightly different
formulation. Asymptotic tangencies (2.7), (2.10) had been replaced by exponential decay
estimates at rates µi−1 − ε̃ and −(µi + ε̃), respectively. Therefore the tangencies (2.7) hold

in W k+1
loc \W k

loc with W 0
loc := {v} and W

i(v)
loc = Wloc the usual local unstable manifold of v.

Similarly the tangencies (2.10) hold in Wk,loc\Wk+1,loc with Wi(v),loc the usual local stable
manifold W s

loc(v). The asymptotic tangency statement (2.3) for single trajectories u(t) is
then straightforward in the finite-dimensional unstable manifolds, writing

W i(v)\{v} =

i(v)−1⋃
k=0

(W k+1
loc \W

k
loc).(2.12)

Statement (2.10), in the stable case, needs a separate argument to exclude super-exponential
decay and to ensure
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⋂
k≥i(v)

Wk,loc = {v}.(2.13)

This fact has been established by [An88]; see also the precursors in [Lax56, Ag66, He85,
An86], and (1.18) above. The arguments in [An88] reduce the convergence question to a
linear problem without advection term. They apply equally well to cover the generalization to
differences u(t) := u2(t)−u1(t) which are not identically zero. In particular the asymptotics
(2.7), (2.10) for differences u = u2 − u1 imply constraints (2.8), (2.11) for the zero numbers.

./

As an example we recall from (1.8) that the linear case f(x, u, p) = b(x)p+c(x)u was already
considered by Sturm as early as 1836; see [St36]. The fast unstable manifolds W i = Ei and
stable manifolds Wi = Ei then coincide with their tangent eigenspaces: σi = 0, ηi = 0. Via
the explicit solution

u(t) =
∑
i≥0

u0,iϕie
µit(2.14)

with constant real coefficients u0,i the asymptotic statements of lemma 2.1 follow; for example
the asymptotic shape ϕk for t → −∞ in (2.7) is given by the maximal index k < i(v) for
which u0,k 6= 0. Analogously (2.10) holds for the minimal such k ≥ i(v). Similarly

j ≤ z(u0) ≤ k(2.15)

for any nontrivial linear combination u0 ∈ span{ϕj, . . . , ϕk}: following Sturm’s original
argument we just invoke the Sturm property (1.9), (1.10) for ϕ = u(t) and compare the
dominant eigenfunctions in (2.14) for t→ ±∞.
After these preliminaries we introduce the main players in our proof of theorem 1.1. As
in section 1 we consider the i-dimensional fast unstable manifolds W i, 1 ≤ i ≤ i(v), of the
hyperbolic trivial equilibrium v ≡ 0 with Morse index i(v). The hemisphere candidate caps
Σi−1
± for the Mayer-Vietoris type decomposition

∂W i = Σi−1 = Σi−1
+ ∪ Σi−1

−
(2.16)

∂W i−1 = Σi−2 = Σi−1
+ ∩ Σi−1

−

introduced in (1.41) are defined as ω-limit sets ω(Σi−1
δ± ) of carefully constructed small closed

upper and lower flattened protocaps Σi−1
δ± of radius δ > 0 around v = 0 in W i; see also figure

2.1.
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v
Σ i-2

Σδ+
i-1

Σ    = ∂Wi-2 i-1

W i-1

W i

φi-1

+Σ    ⊆ ∂Wi-1 i

Figure 2.1: Upper half of fast unstable manifold W i of v = 0: horizontal faster unstable
part W i−1 (double arrows), upper protocap hemisphere Σi−1

δ+ (dashed), upper cap boundary
Σi−1

+ ⊆ Σi−1 = ∂W i (fat), and boundary Schoenflies (sphere Σi−2 = ∂W i−1 (dots). The
slowest unstable tangent vector ϕi−1 at v is vertical (dashed).

For the convenience of our reader, we recall the notion of the ω-limit set for sets M ⊂ Xα

of initial conditions. The set

ω(M) :=
⋂
t0≥0

clos (
⋃
t≥t0

T (t)M) =

(2.17)
= {u | u = lim

n→∞
un(tn) for suitable un0 = un(0) ∈M, tn →∞}

denotes the ω-limit set of M , provided that the local semiflow T (t)u0 is defined for all
u0 ∈M, t ≥ 0.
To construct the flattened hemispherical protocaps Σi−1

δ± in W i
loc we work in the coordinates

u = η0ϕ0 + . . .+ ηi−1ϕi−1 + o(|η|2),(2.18)

of the tangent space Ei = span {ϕ0, . . . , ϕi−1} to W i
loc at v = 0. The faster unstable manifold

W i−1
loc can be written as the graph of a function

ηi−1 = ηe(η̂) = ηe(η0, . . . , ηi−2)(2.19)

where η̂ = (η0, . . . , ηi−2) and ηe : Ei−1 ∼= Ri−1 ⊇ {|η̂| ≤ δ} → R, in these coordinates. The
index e foreshadows the eventual equatorial role of W i−1 in the eventual Schoenflies sphere
Σi−1. We define the upper protocap Σi−1

δ+ as the graph of the C1-function

ηi−1 = ηe(η̂) + (δ2 − |η̂|2)2(2.20)
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with Euclidean norm |η̂|. The domain is the open ball |η̂| ≤ δ. The flattened lower hemi-
spherical protocap Σi−1

δ− is constructed analogously with −(δ2 − |η̂|2)2 in (2.20), instead.
Henceforth we choose δ > 0 in our construction so small that the assertion (2.21) lemma 2.2
below will hold.
By tangency of W j to the eigenspace Ej at v = 0, the protocaps Σi−1

δ± are indeed homeomor-
phic to true hemispheres. Likewise Σi−2 is homeomorphic to a Schoenflies sphere in Ei−1, by
the induction hypothesis of our proof of theorem 1.1. For the objects Σi−1,Σi−1

± , however,
the sphere jargon is only a suggestive terminology which still remains to be justified with
mathematical rigor.

Lemma 2.2 With the above notation and under the assumptions of theorem 1.1 the following
holds true for all 1 ≤ i ≤ i(v) on the fast unstable manifolds W i in the unstable manifold
W = W i(v) = W u(v) of v ≡ 0. Let δ > 0 be chosen small enough.
Then, for any two (distinct) elements u1, u2 of the same protocap Σi−1

δ+ or Σi−1
δ− , we have

z(u2 − u1) < i− 1.(2.21)

Proof:
We proceed indirectly and assume sequences of distinct u1,n

0 , u2,n
0 to exist in protocaps Σi−1

δn+ ⊆
W i

loc, for δn → 0, such that z(u2,n
0 − u

1,n
0 ) ≥ i− 1, and hence

z(u2,n
0 − u

1,n
0 ) = i− 1.(2.22)

We normalize the differences and, because W i is finite-dimensional and tangent to Ei, pass
to a convergent subsequence

ũn0 := (u2,n
0 − u

1,n
0 )/|u2,n

0 − u
1,n
0 |α → ũ0 6= 0.(2.23)

By construction (2.18)–(2.20) of the flattened protocaps Σi−1
δ+ we have ũ0 ∈ Ei−1.

A slight difficulty arises because ũ0(x) might possess degenerate zeros which perturb to any
number of strict sign changes for u2,n

0 (x) − u1,n
0 (x). This difficulty can be overcome via

backwards time extensions

u1,n(t, x), u2,n(t, x), and ũn(t, x),(2.24)

under the linearized PDE in Ei and the original semilinear PDE in W i, respectively, as
follows. Fix some time t = −τ < 0 such that all zeros of x 7→ ũ(−τ, x) are simple. This is
possible because the zero number can drop only finitely often; see Sturm properties (1.9)(i)–
(iii). Backwards solutions of the ODE on W i ⊆ Xα depend continuously on initial conditions,
and δ → 0 makes that nonlinear ODE converge to its linearization. Therefore the same
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simple zeros of ũ(−τ, ·), and only those, are inherited by the normalized quotients ũn(−τ, ·)
and hence by the differences u2,n(−τ, ·)− u1,n(−τ, ·). Suppressing superscripts n, the Sturm
property (1.9)(ii) implies

i− 1 = z(u2
0 − u1

0) ≤ z(u2(−τ, ·)− u1(−τ, ·)) = z(ũ(−τ, ·)) < i− 1.(2.25)

In the last inequality we have used that ũ0 ∈ Ei−1 implies ũ(−τ, ·) ∈ Ei−1, and z < i− 1 at
any nonvanishing element of Ei−1 = span{ϕ0, . . . , ϕi−2}. The contradiction (2.25) completes
the indirect proof of the lemma.

./

3 Injectivity

Let the assumptions of theorem 1.1 remain in effect throughout the following sections.
In this section we collect injectivity properties of eigenprojections P j onto eigenspaces Ej,

when restricted to the closure W
i

= W i ∪ Σi−1 of the fast unstable manifold and to the
hemisphere candidate caps Σi−1

± = ω(Σi−1
δ± ) of the trivial hyperbolic equilibrium v ≡ 0. Here

j = i and j = i − 1 for W
i

and Σi−1
± , respectively. See lemmas 3.2 and 3.6. The string

of lemmas 3.3 – 3.5 prepares the main injectivity result of lemma 3.6 on the hemisphere
candidate caps Σi−1

± as follows. In lemma 3.3 we study how all orbits in W i\{v} traverse
the protocap barrier

Σi−1
δ := Σi−1

δ+ ∪ Σi−1
δ− .(3.1)

Lemma 3.4 then establishes the equatorial role of the faster unstable manifold W
i−1

with

Schoenflies boundary Σi−2 = ∂W
i−1

for the hemisphere cap candidates Σi−1
± , as

Σi−2 = Σi−1
± ∩ W

i−1
.(3.2)

Lemma 3.5 establishes how distinct limiting elements uκ = lim
n→∞

uκ,n(tκn) ∈ Σi−1
± = ω(Σi−1

δ± ),

κ = 1, 2, of forward solutions in the same protocap Σi−1
δ± can actually be obtained by one

and the same choice tκn = tn of stepping times, all starting at uκ,n(0) ∈ Σi−1
δ± . This is

the most important technical step in the proof of the final injectivity lemma 3.6 on the
hemisphere candidate caps Σi−1

± . Surjectivity properties, the other main ingredient to our
proof of theorem 1.1, will be collected in section 4.
We begin with an elementary observation on general invariant sets M ⊆ Xα which relates
injectivity of P j to the zero number z(u2 − u1) of the difference of points uκ ∈M, κ = 1, 2.
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Lemma 3.1 Let M ⊆ Xα and assume

z(u2 − u1) < j(3.3)

for any two distinct uκ ∈M . Then the eigenprojection

P j : M → Ej = span {ϕ0, . . . , ϕj−1}(3.4)

is injective on M .
Similarly, we obtain injectivity of the complementary eigenprojection

Pj : M → Ej = span {ϕj, ϕj+1, . . .}(3.5)

under the complementary assumption on distinct uκ ∈M ,

z(u2 − u1) ≥ j.(3.6)

If M is also compact, then the injective projections P j are homeomorphisms onto the image
P jM .

Proof:
The proof of claim (3.4) is by contraposition: suppose

P ju2 = P ju1(3.7)

for two distinct uκ ∈ M . In other words, 0 6= ϕ := u2 − u1 ∈ Ej = span {ϕj, . . .} is in
the Sturm-Liouville eigenspace Ej = kerP j complementary to Ej. Essentially by Sturm’s
original argument [St36] this implies

z(ϕ) ≥ j;(3.8)

see (2.14), (2.15). This negation of assumption (3.3) proves injectivity of (3.4). The proof
of (3.6) is analogous.
The homeomorphism claim, i.e. continuity of the inverse (P j)−1 : P jM → M , is also
immediate: by compactness of M the continuous projection P j = ((P j)−1)−1 maps closed,
viz compact, sets to compact sets – which are closed. This proves the lemma.

./

This lemma has been crucial, already, in the results of [Bru90, Jo89, Ro91, MaNa97] on
global attractors, and in the Poincaré-Bendixson results of [FiMP89b, Na90]. It is worth
mentioning that the assumption (3.3) on M does not depend on the particular choice of
a Sturm-Liouville problem for the eigenprojection (3.4). For example we might choose L2-
orthogonal Fourier decomposition, with ϕκ(x) = cos(κπx).
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We explicitly caution our alert reader that the “intermediate assumption”

j ≤ z(u2 − u1) < k(3.9)

on M does not imply injectivity of the intermediate eigenprojection

P k
j : M → Ek

j := span {ϕj, . . . , ϕk−1}.(3.10)

Counterexamples with j = 2, k = 4, ϕj := cos(jπx), and M = span {ϕ} for suitable
ϕ ∈ span {ϕ1, ϕ4} with z(ϕ) = 3 are easily constructed. Indeed P k

j M = {0}. This
phenomenon may present a serious obstacle, in fact, to a simple geometric description of the
set of heteroclinic orbits u : v−  v+ with k = i(v−) and j = i(v+).
We can now collect injectivity results for our proof of theorem 1.1 under the assumptions

there. We begin with the eigenprojection P i on the closure W
i

of the fast unstable manifold
W i of the unstable equilibrium v ≡ 0 and with P i−1 on the protocaps Σi−1

δ± . We recall
(2.18)–(2.20) and figure 2.1 for definitions of the flattened protocaps Σi−1

δ± ⊆ W i.

Lemma 3.2 For δ > 0 fixed small enough, and for all t ≥ 0, the eigenprojections

P i : W
i → Ei(3.11)

P i−1 : W
i−1 → Ei−1(3.12)

P i−1 : T (t)Σi−1
δ± → Ei−1(3.13)

are all injective, separately but not jointly in the ± cases.

Proof:
By lemma 3.1, injectivity claim (3.11) for P i on M := W

i
holds true, provided we show

z(u2 − u1) < i(3.14)

for distinct uκ ∈ W
i
. The latter fact was established on W i

loc in lemma 2.1; see (2.8). It
extends to the fast unstable manifold W i by the Sturm property of the forward semiflow

T (t), t ≥ 0. It extends to the forward and backward invariant closure W
i
, indirectly. Suppose

z(u2− u1) ≥ i for two distinct uκ ∈ Σi−1 = ∂W i = W
i\W i. By the Sturm property (1.9)(ii)

the same holds true at any negative time t = −τ < 0. Starting there, instead, we may
assume all zeros of x 7→ u2(x)−u1(x) to be simple. This extends to approximating elements
W i 3 uκ,n → uκ, κ = 1, 2, and contradicts (3.14) in W i. Therefore (3.14) and injectivity

(3.11) extend to the closure W
i
. Obviously this also proves (3.12), which is only listed for

precise referencing of superscripts i and i− 1 later.
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To prove injectivity (3.13) on the hemisphere cap T (t)Σi−1
δ+ we recall injectivity of P i−1 on

W
i−1

, by (3.12) or the induction hypothesis. Consider t = 0 first. The flattened closed

hemisphere Σi−1
δ+ intersects W i−1

loc ⊂ W
i−1

in the slightly deformed standard sphere S̄i−1
δ+ ∩

W
i−1

= {|η̂| = δ, ηi−1 = ηe(η̂)}, in the local coordinates η̂ = (η0, . . . , ηi−2), ηi−1 of (2.18)–
(2.20). Moreover

P i−1 : Σi−1
δ+ → Ei−1(3.15)

is injective, by lemma 3.1 and zero number property (2.21) of lemma 2.2 on Σi−1
δ+ . For any

fixed t > 0, injectivity (3.15) of P i−1 persists on T (t)Σi−1
δ+ by dropping of the zero number.

This proves (3.13) and the lemma. ./

To prepare for injectivity of P i−1 on the hemisphere cap candidates Σi−1
± = ω(Σi−1

δ± ), which
we only achieve in lemma 3.6 below, we now study the behavior of the protosphere

Σi−1
δ := Σi−1

δ+ ∪ Σi−1
δ− ⊆ W i(3.16)

under the (semi-)flow T (t) on W i. Geometrically Σi−1
δ is a sphere only in the equatorial

faster unstable manifold W i−1, flattened in the remaining ϕi−1-direction of W i
loc. Since

P i : W
i → Ei is injective, by lemma 3.2, we can use coordinates η0ϕ0 + . . .+ ηi−1ϕi−1 ∈ Ei

on W
i

globally, from now on. Therefore we study the eigenprojection P iT (t)Σi−1
δ ⊆ Ei of

the flowing protosphere.

Lemma 3.3 Under the assumptions of theorem 1.1, which remain in effect throughout, the
protosphere Σi−1

δ around v = 0 in W i has the following properties.

(i) P iT (t)Σi−1
δ ⊂ Ei is a homeomorphic Schoenflies sphere embedding, for any real time

t;

(ii) there exists t0 > 0 such that the snapshots P iT (t)Σi−1
δ remain interior to the Schoenflies

snapshot

Σ̃i−1
m := P iT (mt0)Σ

i−1
δ(3.17)

for t ≤ (m− 1)t0, and exterior for t ≥ (m+ 1)t0.

(iii) In particular the snapshots at t = mt0 are pairwise disjoint and form an expanding
system of nested embedded Schoenflies spheres, for m ∈ Z.
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Proof:
Claim (i) is immediate because the protosphere Σi−1

δ ⊂ W i−1 itself provides a homeomor-
phic Schoenflies sphere embedding P iΣi−1

δ ⊆ Ei by explicit construction; see (2.17)–(2.18).

Indeed T (t) is a homeomorphism on W
i

and P i projects all of the compact closure W
i

homeomorphically onto its image, by injectivity lemma 3.2 and by lemma 3.1. Via the
open neighborhood P iW i ⊂ Ei of the sphere embeddings P iT (t)Σi−1

δ we therefore obtain
embeddings as Schoenflies spheres.
Obviously claim (iii) is a special case of claim (ii). To prove claim (ii) we first note that any of
the above homeomorphic Schoenflies sphere embeddings in Ei decomposes the complement
into two open connected components by Brouwer degree: the interior, which contains v = 0,
and the exterior. By homotopy to t = 0, the flow homeomorphisms T (t) on W i preserve this
decomposition, for any real time t.
Now choose t0 > 0 large enough such that P iT (t)Σi−1

δ is in the interior of the Schoenflies
sphere Σi−1

δ , for all t ≤ −t0. Such a t0 exists because the unstable hyperbolic equilibrium
v = 0 is asymptotically stable within the unstable manifold W u ⊇ W i, in backwards time
direction, and because the finite-dimensional protosphere Σi−1

δ is compact.
By this construction of t0, Schoenflies spheres P iT (t)Σi−1

δ remain interior to Σ̃i−1
0 for t ≤ −t0.

This proves the interior part of claim (ii), for m = 0.

To prove the exterior part, for m = 0, we only note that any Schoenflies sphere Σ̃ is in the
exterior of another Schoenflies sphere Σ̂ if, and only if, Σ̂ is in the interior of Σ̃. In symbols
we denote this relation as Σ̂ � Σ̃. We have already proved

P iT (−t)Σi−1
δ � Σ̃i−1

0 = P iT (0)Σi−1
δ ,(3.18)

for all t ≥ t0. Since the flow homeomorphism T (t) on W i preserves the interior/exterior
relation � of Schoenflies spheres, (3.18) implies

Σ̃i−1
0 = P iT (0)Σi−1

δ � P iT (t)Σi−1
δ ,(3.19)

for all t ≥ t0. This proves the exterior part of claim (ii), for m = 0.
The general case of claim (ii) is now obvious, if we apply the flow homeomorphism T (mt0), m ∈
Z, to both sides of (3.18) and (3.19). This proves the lemma.

./

The above lemma formalizes the gate keeper property of the protosphere Σi−1
δ in W i: any

trajectory u(t) ∈ W i\{v} has to traverse the gate Σi−1
δ after lingering and loitering there for

less than a time 2t0:
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W i\{v} =
⋃
t∈R

T (t)Σi−1
δ .(3.20)

Constructing the flattened protosphere gate Σi−1
δ more carefully, transverse to the flow in

Σi−1
δ , we could have reduced loitering time to zero. But why take the trouble and suppress

loitering entirely?
As a first application of the gatekeeper protosphere Σi−1

δ and its protocap constituents Σi−1
δ+ ∪

Σi−1
δ− = Σi−1

δ , we study the intersection of the hemisphere candidate caps Σi−1
± with the closure

W
i−1

of the faster unstable manifold W i−1 with boundary sphere Σi−2.

Lemma 3.4

ω(Σi−1
δ ) = Σi−1

+ ∪ Σi−1
− = Σi−1;(3.21)

Σi−1
± ∩ W

i−1
= Σi−2.(3.22)

Proof:
We recall the definitions of the boundaries Σj−1 = W

j\W j and the hemisphere candidate
caps Σi−1

± = ω(Σi−1
δ± ).

To prove claim (3.21) we observe that Σi−1 = ω(Σi−1
δ ) by gatekeeper lemma 3.3. Indeed

Σi−1 := W
i\W i and all of P iW i is swept out by the snapshots Σ̃i−1

m,δ, m→∞. This implies
(3.21) because

Σi−1 = ω(Σi−1
δ ) = ω(Σi−1

δ+ ∪ Σi−1
δ− ) =

(3.23)
= ω(Σi−1

δ+ ) ∪ ω(Σi−1
δ− ) = Σi−1

+ ∪ Σi−1
− ,

by definition (1.41) of Σi−1
± , definition (3.16) of the protosphere Σi−1

δ , and definition (2.17)
of ω-limit sets.
To prove claim (3.22) next, we first show Σi−2 ⊆ Σi−1

± ∩W
i−1

. Obviously Σi−2 := W
i−1\W i−1 ⊆

W
i−1

. Applying gatekeeper lemma 3.3 to Σi−2 := W
i−1\W i−1, this time, we also obtain

Σi−2 = ω(Σi−1
δ± ∩W

i−1) ⊆ ω(Σi−1
δ± ) =: Σi−1

± .(3.24)

In the first equality of (3.24) we have used that the δ-sphere Σi−1
δ± ∩W i−1 = {|η̂| = δ} in

W i−1 = {ηi−1 = ηe(η̂)} sweeps out all of W i−1 under T (t), just like the flattened protosphere
Σi−1
δ does in W i.

It remains to show the converse claim Σi−1
± ∩W i−1 ⊆ Σi−2 := W

i−1\W i−1 of (3.22). We
proceed indirectly and assume the existence of u0 ∈ Σi−1

± ∩W i−1 = ω(Σi−1
δ± ) ∩W i−1. By the
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gatekeeper property (ii) of lemma 3.3 there exists m ∈ Z such that P iu0 is in the interior
of some Schoenflies snapshot Σ̃i−1

m , whereas P iΣi−1 = P iω(Σi−1
δ ) is in the exterior. This

contradicts u0 ∈ Σi−1
± , proves claim (3.22), and completes the lemma. ./

We now establish how two (distinct) elements

uκ = lim
n→∞

ũ(tκn) ∈ Σi−1
± = ω(Σi−1

δ± ), κ = 1, 2,(3.25)

of the same boundary hemisphere candidate cap Σi−1
± are actually isochronous limits t1n = t2n,

of suitably chosen trajectories uκ,n(t) with uκ,n0 := uκ,n(0) ∈ Σi−1
δ± .

Lemma 3.5 Let u1, u2 ∈ Σi−1
+ = ω(Σi−1

δ+ ).
Then there exist two sequences uκ,n0 ∈ Σi−1

δ+ and a single sequence tn → +∞ such that

uκ = lim
n→∞

uκ,n(tn)(3.26)

holds for the trajectories uκ,n(t) := T (t)uκ,n0 , simultaneously for κ = 1 and κ = 2.
The same statement holds true for uκ ∈ Σi−1

− = ω(Σi−1
δ− ).

Proof:
We consider uκ ∈ Σi−1

+ = ω(Σi−1
δ+ ), only, the case of Σi−1

− being identical. By definition
(2.17) of ω-limit sets we have non-isochronous trajectories ũκ,n(tκn) ∈ T (tκn)Σi−1

δ+ ⊆ W i which

approximate uκ ∈ Σi−1
+ ⊆ W

i
as in (3.25), for κ = 1, 2. To construct the isochronous

trajectories uκ,n(tn) of (3.26) consider any small ε > 0. It is then sufficient to determine
m ∈ Z such that the same protosphere snapshot

Σ̃i−1
m := P iT (mt0)Σ

i−1
δ = P iT (mt0)(Σ

i−1
δ+ ∪ Σi−1

δ− )(3.27)

contains elements, both, in the ε-neighborhood of P iu1 and P iu2. Here we use the projection

P i : W
i → Ei, which is homeomorphic onto its image by lemma 3.2, to determine conver-

gence for ε→ 0. We also use the separation

T (t)Σi−1
δ+ ∩ T (t)Σi−1

δ− = (T (t)Σi−1
δ± ) ∩W i−1(3.28)

which is inherited from t = 0 and allows us to attribute the approximations uκ,n ∈ T (mt0)Σ
i−1
δ

of uκ ∈ Σi−1
+ to T (mt0)Σ

i−1
δ+ .

Given ε > 0 we first choose n0 ∈ N large enough such that

dist (P iũκ,n(tκn), P iuκ) < ε,(3.29)
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for all n ≥ n0 and, always, for κ = 1, 2 alike. We then choose nκ > n0 such that

tκnκ ≥ 3t0 + max(t1n0
, t2n0

).(3.30)

With such a gap of length at least 3t0 we can now find m ∈ Z such that

tκn0
≤ (m− 1)t0 < (m+ 1)t0 ≤ tκnκ .(3.31)

By our gatekeeper lemma 3.3(ii) this implies that P iũκ,n(t) are inside the Schoenflies sphere
Σ̃i−1
m for t = tκn0

, but outside for t = tκnκ . The two straight lines from P iũκ,n(tκn0
) to P iũκ,n(tκnκ)

are entirely in the ε-neighborhoods of P iuκ, respectively, for κ = 1, 2. Each line must contain
an element P iuκ,ε(mt0) of the same Schoenflies sphere Σ̃i−1

m . For εn → 0 the times tn :=
m(εn)t0 provide the isochronous approximants uκ,n(tn) := uκ,εn(m(εn)t0) ∈ T (m(εn)t0)Σ

i−1
δ+ ,

as claimed in (3.26). This proves the lemma.
./

We are now ready to prove the culminating injectivity lemma of this section which asserts
injectivity of, not just P i but, P i−1 on the hemisphere candidate caps Σi−1

± . Together with
surjectivity onto the interior of the equator P i−1Σi−2 this will show that Σi−1

± are indeed
hemisphere caps, in section 4.

Lemma 3.6

(i) Let uκ ∈ Σi−1
+ for κ = 1, 2. Then

z(u2 − u1) < i− 1.(3.32)

The same statement holds true for uκ ∈ Σi−1
− .

(ii) Each of the two continuous projections

P i−1 : Σi−1
± → Ei−1(3.33)

is injective.

Proof: By lemma 3.1, claim (i) implies claim (ii). It only remains to prove (3.32) of claim
(i) for any two distinct elements u1, u2 of Σi−1

+ , the proof for Σi−1
− being identical.

As in the proof of lemma 2.2 we proceed indirectly and suppose

z(u2 − u1) ≥ i− 1.(3.34)
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Possibly after a negative time step t = −τ < 0 in the forward and backward invariant ω-limit
set Σi−1

+ = ω(Σi−1
δ+ ), as in (2.24), we may assume all zeros of u2 − u1 to be simple. By the

Sturm property (1.9)(ii), assumption (3.34) is indeed preserved under such a backward time
step.
By Lemma 3.5 there exist isochronously approximating trajectories uκ,n(tn) → uκ which
start at uκ,n0 ∈ Σi−1

δ+ in the upper protocap, for both κ = 1, 2. Because all zeros of u2 − u1

are now simple, we conclude

i− 1 ≤ z(u2 − u1) = z(u2,n(tn)− u1,n(tn)) ≤
(3.35)

≤ z(u2,n
0 − u

1,n
0 ) < i− 1

for large enough n. Here we have used Sturm property (1.9)(ii) for the second inequality,
and lemma 2.2, (2.21) for the protocap elements uκ,n0 ∈ Σi−1

δ+ in the last inequality.
The contradiction (3.35) proves the lemma. ./

4 Surjectivity

In this section we prove the sphere part of theorem 1.1: the projection

P iΣi−1 ⊆ Ei = span {ϕ0, . . . , ϕi−1}(4.1)

is homeomorphic to a Schoenflies sphere. By induction hypothesis this is already proved for
P i−1Σi−2 ⊆ Ei−1. In lemma 3.4 we have written

Σi−1 = Σi−1
+ ∪ Σi−1

−(4.2)

as a union of the hemisphere cap candidates Σi−1
± which intersect with the faster unstable

manifold closure W
i−1

only at its boundary Σi−2 = ∂W i−1 = W
i−1\W i−1. See also definition

(1.41) of Σi−1
± as ω-limits of the protocaps Σi−1

δ± .
In lemma 4.1 below we show that each restricted eigenprojection P i−1

± of P i−1,

P i−1
± : Ei ⊇ P iΣi−1

± → B̄i−1 ⊆ Ei−1,(4.3)

is a homeomorphism onto the Schoenflies ball B̄i−1 with boundary sphere Si−2 := P i−1Σi−2.
We will then denote the inverses of P i−1

± by

η± : B̄i−1 → P iΣi−1
± ;

(4.4)
(η0, . . . , ηi−2) 7→ (η0, . . . , ηi−2, η

±
i−1).
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Obviously η±i−1 are determined by continuous scalar functions η± := η±i−1,

η± : B̄i−1 → R.(4.5)

The equatorial ball section B̄i−1 := P iW
i−1

of B̄i := P iW
i

is given by the graph of yet
another continuous scalar function

ηe : B̄i−1 → R.(4.6)

See (2.19) for the local version of ηe, which extends globally to B̄i−1 = P i−1W
i−1

by injec-
tivity lemma 3.2, (3.12).
In lemma 4.2 we show that

η− ≤ ηe ≤ η+(4.7)

in B̄i−1. The inequalities turn out to be strict, except at the boundary Si−2 = P i−1Σi−2 =
∂B̄i−1, where all three functions coincide. In particular this finally establishes a hemisphere
decomposition

Σi−1 = Σi−1
+ ∪ Σi−1

(4.8)
Σi−2 = Σi−1

+ ∩ Σi−1
−

of Mayer-Vietoris style, with equator Σi−2, as announced in (1.45).
Therefore the graphs of η± define a homeomorphism h of P iΣi−1 to the standard (i − 1)-
sphere S ⊆ Ei. Indeed h has been already constructed, for the equatorial ball of S in Ei−1,
by the induction hypothesis on the Schoenflies sphere Σi−2, and only has to be lifted to the
graph of ηe, via ηe. The intervals η− ≤ ηi−1 ≤ η+ are mapped to the corresponding fibers
over the equatorial ball of S, extending from the lower to the upper standard hemisphere.
This proves the sphere part of theorem 1.1, up to lemmas 4.1 and 4.2 below.

Lemma 4.1 The two eigenprojections P i−1, restricted as

P i−1
± : P iΣi−1

± → Ei−1,(4.9)

are homeomorphisms onto their shared range B̄i−1 := P iW
i−1

, as claimed in (4.3).

Proof:
Injectivity of P i−1

± in (4.9) follows from injectivity of

P i−1 : Σi−1
± → Ei−1(4.10)
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as proved in lemma 3.6; see (3.33). Indeed P i−1
± P iΣi−1

± = P i−1Σi−1
± inherits injectivity.

To prove surjectivity, i.e. B̄i−1
± = P i−1Σi−1

± we first show

B̄i−1 ⊆ P i−1Σi−1
± .(4.11)

We proceed with the + case, without loss.

We apply Brouwer degree in the ball B̄i−1 = P i−1W
i−1

with Schoenflies sphere boundary
Si−2. Fix any η̂∗ = (η0, . . . , ηi−2) such that, by slight abuse of notation,

η̂ := η0ϕ0 + . . .+ ηi−2ϕi−2 ∈ Bi−1 := B̄i−1\Si−2.(4.12)

Since Σi−1
+ = ω(Σi−1

δ+ ), by (2.17), it is sufficient to show

η̂∗ ∈ P i−1T (t)Σi−1
δ+(4.13)

for all large enough t ≥ 0.
We define a continuous homotopy H : [0,∞) × B̄i−1 → Ei−1 as follows. For η̂ ∈ B̄i−1 with
|η̂| ≤ δ we define

H(t, η̂) := P i−1T (t)u0,(4.14)

where u0 ∈ Σi−1
δ+ is the unique initial value in the upper protocap for which P i−1u0 = η̂;

see lemma 3.2, (3.13). For η̂ ∈ B̄i−1 with |η̂| ≥ δ we use u0 ∈ W
i−1

in the faster unstable
manifold instead; see lemma 3.2, (3.12). Note continuity of the homotopy H, because the

protocap Σi−1
δ+ intersects W

i−1
precisely at |η̂| = δ. Obviously H(0, ·) = id, on Si−2. For

all t ≥ 0, we have H(t, Si−2) = Si−2 = P i−1Σi−2, by flow-invariance of Σi−2. In particular
η̂∗ /∈ H(t, Si−2), for any t ≥ 0. We can therefore apply homotopy invariance of the Brouwer
degree deg(H, B̄i−1, η̂∗) and conclude

deg(H(t, ·), B̄i−1, η̂∗) = deg(H(0, ·), B̄i−1, η̂∗) = 1.(4.15)

In particular η̂∗ ∈ H(t, B̄i−1), for any t ≥ 0.
To complete the proof of claim (4.11) we choose any sequence t0 ≤ tn →∞ large enough, so
that

η̂∗ /∈ P i−1T (t)u0,(4.16)

for any t ≥ t0 and any u0 ∈ W
i−1

such that |P i−1u0| ≥ δ. This is certainly possible because

η̂∗ /∈ Si−2 = P i−1Σi−2 = P i−1ω(W
i ∩ Σi−1

δ+ ) : the sphere |η̂| = δ in W
i−1

recedes to the

boundary Σi−2 of W
i−1

.
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By nonvanishing Brouwer degree (4.15) we can now pick η̂n ∈ B̄i−1 such that H(tn, η̂
n) = η̂∗.

By (4.16) we must have |η̂n| < δ, which implies P i−1T (tn)un0 = η̂∗ for some un0 ∈ Σi−1
δ+ with

P i−1un0 = η̂n. For n→∞ we obtain a convergent subsequence

T (tn)un0 → u ∈ Σi−1
+ = ω(Σi−1

δ+ )(4.17)

such that

P i−1u = η̂∗ = P i−1T (tn)un0 .(4.18)

This proves claim (4.11).
To prove, conversely, that

P i−1Σi−1
+ ⊆ B̄i−1(4.19)

we argue indirectly. Suppose there exists u ∈ Σi−1
+ = ω(Σi−1

δ+ ) such that P i−1u is strictly
outside the Schoenflies sphere Si−2 = ∂B̄i−1 = B̄i−1\Bi−1. Then the same holds true for
some points in the protocap T (t)Σi−1

δ+ , and certain sufficiently large t = tn → ∞. We now
invoke injectivity of P i−1 on T (t)Σi−1

δ+ to see that

P i−1T (t)Σi−1
δ+ ⊆ P i−1T (t)(Σi−1

δ+ ∩W
i−1

) ⊆ B̄i−1.(4.20)

Indeed, the homeomorphisms P i−1T (t) must map the interior of the protocap Σi−1
δ+ to the

interior. Passing to the ω-limit proves claim (4.19).
Together (4.19) and (4.12) prove surjectivity of P i−1

+ . The case of P i−1
− is analogous, and the

lemma is proved.
./

Lemma 4.2 The functions η±, ηe : B̄i−1 → R defined in (4.3)–(4.6) satisfy claim (4.7), i.e.
η− ≤ ηe ≤ η+ on B̄i−1, with equality on the boundary Si−2 = ∂B̄i−1, only. In particular we
have a hemisphere decomposition of Mayer-Vietoris type

Σi−1 = Σi−1
+ ∪ Σi−1

− ,(4.21)

Σi−2 = Σi−1
+ ∩ Σi−1

− .(4.22)

as announced in (1.45).
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Proof:
By construction and lemmas 3.4, 3.6, 4.1, graph η± = P iΣi−1

± are the homeomorphic P i-
images of the upper and lower hemisphere candidates Σi−1

+ ∪ Σi−1
− = Σi−1; see (3.21). This

proves (4.21).
By lemma 3.4, (3.22) we also know

Σi−1
± ∩W

i−1
= ∂W

i−1
= Σi−2.(4.23)

Since W
i−1

= graph ηe, this implies η± = ηe on the boundary sphere Si−2 = P i−1Σi−2 =
∂B̄i−1.
Now fix any η̂∗ in the interior Bi−1 of the reference ball B̄i−1 = P i−1W

i−1
= P i−1Σi−1

± ; see
lemma 4.1. It only remains to show

η+(η̂∗) > ηe(η̂∗);(4.24)

the arguments for η−(η̂∗) < ηe(η̂∗) are analogous.
To show (4.24) we first note time invariance of W i\W i−1. In particular η + (η̂∗) 6= ηe(η̂∗).
Moreover we can choose a trajectory u(t) ∈ W i\W i−1, with projection

P iu(t) =: (η̂(t), ηi−1(t)),(4.25)

such that u(τ) is close enough to ũ ∈ Σi−1
+ with P iũ = (η̂∗, η+(η̂∗)) to satisfy

σ(t) := sign (ηi−1(t)− ηe(η̂(t))) = sign (η+(η̂∗)− ηe(η̂∗)) 6= 0(4.26)

at t = τ . Indeed (4.17), (4.18) in the proof of lemma 4.1 show that this is possible for some
u(0) := un0 ∈ Σi−1

δ+ and τ := tn such that, in addition

P i−1u(τ) = η̂∗ = P i−1
u .(4.27)

By backward invariance of W i\W i−1 we have σ(t) 6= 0, for all t ≤ 0. Hence

σ(t) ≡ σ(4.28)

does not depend on t. To prove claim (4.24) we consider the limit of σ(t) for t → −∞. By
lemma 2.1 and because u(0) ∈ Σi−1

δ+ \W i−1 we have

lim
t→−∞

u(t)− v
|u(t)− v|α

= +ϕi−1,(4.29)

in fact with v ≡ 0. Moreover ηe(η̂) = o(|η̂|) for η̂ → 0, because W i−1 is tangent to the
eigenspace Ei−1 at v = 0. Therefore (4.29) and the faster exponential decay of the η̂(t)
components, for t→ −∞, imply

σ = lim
t→−∞

ηi−1(t)− ηe(η̂(t))

|ηi−1(t)− ηe(η̂(t))|
= lim

t→−∞

ηi−1(t)

|ηi−1(t)|
= +1,(4.30)

by (4.29). This proves claim (4.24), via (4.26), (4.28), and the lemma. ./

33



5 Interior balls

In the previous sections 3 and 4 we have represented

P iΣi−1 = P iΣi−1
+ ∪ P iΣi−1

−(5.1)

as the union of two graphs, P iΣi−1
± = graph η±. Here

η± : B̄i−1 = P i−1W
i−1 → R(5.2)

indicate the ϕi−1-component of points on the projected hemispheres P iΣi−1
± , and η±(η̂) =

(η̂, η±(η̂)) represent the inverses of the homeomorphic projections

P i−1
± : P iΣi−1 → B̄i−1.(5.3)

In the present section we complete the proof of theorem 1.1 by showing surjectivity of the
injective projection

P i : W
i → [η−, η+] ⊂ Ei.(5.4)

Here we represent elements of Ei = span {ϕ0, . . . , ϕi−1} by their ϕj-coordinates (η̂, ηi−1)
and define the graph segment

[η−, η+] := {(η̂, ηi−1); η̂ ∈ B̄i−1, η−(η̂) ≤ ηi−1 ≤ η+(η̂)}.(5.5)

By lemma 4.2 and by the induction hypothesis we already know η− < η+ except at the
Schoenflies sphere boundary η̂ ∈ Si−2 = ∂B̄i−1 = P i−1Σi−2, where η− ≡ η+. Therefore

P iW
i

is a Schoenflies ball, and theorem 1.1 is proved by induction on i, once surjectivity of
(5.4) is established in lemma 5.1.

Lemma 5.1 The eigenprojection P i projects the closure W
i

of the fast unstable manifold
W i of the hyperbolic equilibrium v ≡ 0 onto the graph segment [η−, η+], i.e.

P iW
i

= [η−, η+].(5.6)

Proof:
We first recall that P i∂W i = P iΣi−1 = P iΣi−1

+ ∪ P iΣi−1
− is the union of the graphs of η±. It

remains to prove
P iW i = ((η−, η+))(5.7)

where ((η−, η+)) denotes the interior of [η−η+], characterized by strict inequalities in (5.5).
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We first prove
P iW i ⊇ ((η−, η+))(5.8)

indirectly. Suppose there exists η = (η̂, η0
i−1) ∈ ((η−, η+))\P iW i. Then η−(η̂) < η0

i−1 <
η+(η̂), and likewise η−(η̂) < ηe(η̂) < η+(η̂) by lemma 4.2. Let I ⊆ ((η−, η+)) denote the
closed interval of (η̂, ηi−1) with end-points η1 = (η̂, η0

i−1) and η2 = (η̂, ηe(η̂)). Then η1 /∈ P iW i

versus η2 ∈ P iW i−1.
Therefore the closed interval I from η1 to η2 contains a boundary point

ηc ∈ I ∩ P i(W
i\W i) = I ∩ P iΣi−1.(5.9)

But the intersection on the right hand side of (5.9) is empty. Indeed

I ∩ P iΣi−1 ⊆ I ∩ (graph η+ ∪ graph η−)
(5.10)

⊆ ((η−, η+)) ∩ (graph η+ ∪ graph η−) = ∅

by construction. This proves part (5.8) of equality (5.7).
To prove, conversely, that

P iW i ⊆ ((η−, η+))(5.11)

we first observe that P iW i−1, the graph of ηe on the open domain Bi−1, is contained in
((η−, η+)), again by lemma 4.2. In particular 0 ≡ v ∈ ((η−, η+)). It remains to show

P i(W i\{v}) ⊆ ((η−, η+)).(5.12)

From gatekeeper lemma 3.3 we recall

W i\{v} =
⋃
t∈R

T (t)Σi−1
δ+ ;(5.13)

see (3.20). This implies the remaining claim (5.12), provided we show

P iT (t)Σi−1
δ+ ⊆ ((η−, η+)).(5.14)

For t = 0, i.e. for the flattened protosphere Σi−1
δ+ itself, this follows from v ∈ ((η−, η+)) and

openness of ((η−, η+)) provided δ > 0 is chosen small enough. By continuity of ηi−1(t) along
any trajectory u(t) ∈ W i, and because injectivity lemma 3.2 implies P iW i ∩ {η−, η+} =
P iW i∩P i∂W i = ∅, claim (5.14) extends to all real times t. This proves (5.12), (5.11), (5.7),
the lemma, and completes the proof of theorem 1.1. ./
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